AN EXTENSION OF THE THEOREM ON PRIMITIVE DIVISORS IN ALGEBRAIC NUMBER FIELDS

A. SCHINZEL
In memory of D. H. Lehmer

Abstract

The theorem about primitive divisors in algebraic number fields is generalized in the following manner. Let A, B be algebraic integers, $(A, B)=$ $1, A B \neq 0, A / B$ not a root of unity, and ζ_{k} a primitive root of unity of order k. For all sufficiently large n, the number $A^{n}-\zeta_{k} B^{n}$ has a prime ideal factor that does not divide $A^{m}-\zeta_{k}^{J} B^{m}$ for arbitrary $m<n$ and $j<k$.

The analogue of Zsigmondy's theorem in algebraic number fields [3] asserts the following.

If A, B are algebraic integers, $(A, B)=1, A B \neq 0$, and A / B of degree d is not a root of unity, there exists a constant $n_{0}(d)$ such that for $n>n_{0}(d)$, $A^{n}-B^{n}$ has a prime ideal factor that does not divide $A^{m}-B^{m}$ for $m<n$.

This theorem will be extended as follows:
Theorem. Let K be an algebraic number field, A, B integers of $K,(A, B)=$ $1, A B \neq 0, A / B$ of degree d not a root of unity, and ζ_{k} a primitive $k t h$ root of unity in K. For every $\varepsilon>0$ there exists a constant $c(d, \varepsilon)$ such that if $n>c(d, \varepsilon)(1+\log k)^{1+\varepsilon}$, there exists a prime ideal of K that divides $A^{n}-\zeta_{k} B^{n}$, but does not divide $A^{m}-\zeta_{k}^{j} B^{m}$ for $m<n$ and arbitrary j.

The above theorem implies the finiteness of the number of solutions of generalized cyclotomic equations considered by Browkin [1, p. 236].

The proof will follow closely the proof given in [3]. Let $\mathbb{Q}(A / B)=K_{0}$, $\frac{A}{B}=\frac{\alpha}{\beta}$, where $\alpha, \beta \in K_{0}, \alpha, \beta$ are integers, and $(\alpha, \beta)=\mathfrak{d}$. Let S and S_{0} be the set of all isomorphic injections of $K_{0}\left(\zeta_{k}\right)$ and K_{0}, respectively, in the complex field, and set

$$
w(\alpha / \beta)=\log \prod_{\sigma \in S_{0}} \max \left\{\left|\alpha^{\sigma}\right|,\left|\beta^{\sigma}\right|\right\}-\log N \mathfrak{d}
$$

where N denotes the absolute norm in K_{0}. Here, $w(\alpha / \beta)$ is the logarithm of the Mahler measure of α / β and so it is independent of the choice of α, β in K_{0}.

Lemma 1. If $|\alpha|=|\beta|$, but α / β is not a root of unity, then

$$
\log \left|\alpha^{n}-\zeta_{k} \beta^{n}\right|=n \log |\beta|+O(d+w(\alpha / \beta)) \log k n
$$

Received by the editor July 27, 1992.
1991 Mathematics Subject Classification. Primary 11R04.
where the constant in the O-symbol depends only on d and is effectively computable.

Lemma 2. If $|\alpha| \neq|\beta|$, then

$$
\log \left|\alpha^{n}-\zeta_{k} \beta^{n}\right|=n \log \max \{|\alpha|,|\beta|\}+O\left(d^{2}+d w(\alpha / \beta)\right)
$$

where the constant in the O-symbol is absolute and effectively computable.
The next lemma is just quoted from [3], where it occurs as Lemma 4.
Lemma 3. Let $\phi_{n}(x, y)$ be the nth cyclotomic polynomial in homogeneous form. If \mathfrak{P} is a prime ideal of $K, n>2\left(2^{d}-1\right), \mathfrak{P} \mid \phi_{n}(A, B)$, and \mathfrak{P} is not a primitive divisor of $A^{n}-B^{n}$, then

$$
\operatorname{ord}_{\mathfrak{P}} \phi_{n}(A, B) \leq \operatorname{ord}_{\mathfrak{P}} n
$$

Finally, we prove
Lemma 4. Let

$$
\psi_{n}\left(x, y ; \zeta_{k}\right)=\prod_{\substack{(j, n)=1 \\ j \equiv 1 \bmod k}}\left(x-\zeta_{k n}^{j} y\right)
$$

We have

$$
\begin{equation*}
\psi_{n}\left(x, y ; \zeta_{k}\right)=\prod_{\substack{m \mid n \\(m, k)=1}}\left(x^{n / m}-\zeta_{k}^{\bar{m}} y^{n / m}\right)^{\mu(m)} \tag{1}
\end{equation*}
$$

where $m \bar{m} \equiv 1 \bmod k$ and

$$
\operatorname{deg} \psi_{n}=\varphi(n) \frac{(k, n)}{\varphi((k, n))}
$$

Proof. The right-hand side of (1) can be written as

$$
\prod_{\substack{m \mid n \\(m, k)=1}} \prod_{i=0}^{n / m-1}\left(x-\zeta_{n / m}^{l} \zeta_{k n / m}^{\bar{m}} y\right)^{\mu(m)}
$$

A factor $x-\zeta_{k n}^{j} y$ occurs in this product with the exponent

$$
E=\sum_{\substack{m \mid n \\(m, k)=1}} \mu(m) \sum_{\substack{i=0 \\ m(k l+\bar{m}) \equiv J \bmod k n}}^{n / m-1} 1
$$

Now,

$$
\sum_{\substack{i=0 \\ m(k i+\bar{m}) \equiv j \bmod k n}}^{n / m-1} 1= \begin{cases}\sum_{\substack{l=0 \\ k l+\bar{m} \equiv J / m \bmod k n / m}}^{n / m-1} 1 & \text { if } m \mid j \\ 0 & \text { otherwise }\end{cases}
$$

and if $m \mid j$,

$$
\sum_{\substack{i=0 \\+\bar{m} \equiv j / m \bmod k n / m}}^{n / m-1} 1= \begin{cases}1 & \text { if } j \equiv 1 \bmod k, \\ 0 & \text { otherwise }\end{cases}
$$

Hence,

$$
E= \begin{cases}\sum_{m|n, m| j} \mu(m) & \text { if } j \equiv 1 \bmod k \\ 0 & \text { otherwise }\end{cases}
$$

and finally

$$
E= \begin{cases}1 & \text { if }(n, j)=1, j \equiv 1 \bmod k \\ 0 & \text { otherwise }\end{cases}
$$

which proves the first part of the lemma.
In order to prove the second part, we notice that there are exactly $\varphi(n) \frac{(k, n)}{\varphi((k, n))}$ positive integers $j \leq k n$ such that $(n, j)=1, j \equiv 1 \bmod k$.
Lemma 5. For every $\varepsilon>0$ there exists $c(d, \varepsilon)$ such that, if

$$
n>c(d, \varepsilon)(1+\log k)^{1+\varepsilon}
$$

then we have

$$
\begin{equation*}
\left|N_{K / \mathbb{Q}} \psi_{n}\left(A, B ; \zeta_{k}\right)\right|>(n k)^{[K: \mathbb{Q}]} . \tag{2}
\end{equation*}
$$

Proof. By Lemma 4,

$$
\psi_{n}\left(A, B ; \zeta_{k}\right)=\left(\frac{B}{\beta}\right)^{\phi(n)(k, n) / \phi((k, n))} \psi_{n}\left(\alpha, \beta ; \zeta_{k}\right)
$$

and since $\left(\frac{B}{\beta}\right)=\mathfrak{d}^{-1}$, we have

$$
\left(\psi_{n}\left(A, B ; \zeta_{k}\right)\right)=\mathfrak{d}^{-\varphi(n)(k, n) / \varphi((k, n))} \psi_{n}\left(\alpha, \beta ; \zeta_{k}\right)
$$

$\frac{1}{\left[K: K_{0}\left(\zeta_{k}\right)\right]} \log \left|N_{K / \mathbb{Q}} \psi_{n}\left(A, B ; \zeta_{k}\right)\right|$
$=\log \left|N_{K_{0}\left(\zeta_{k}\right) / \mathbb{Q}} \psi_{n}\left(\alpha, \beta ; \zeta_{k}\right)\right|-\left[K_{0}\left(\zeta_{k}\right): K_{0}\right] \varphi(n) \frac{(k, n)}{\varphi((k, n))} \log N \mathfrak{d}$
$=\sum_{\sigma \in S} \sum_{\substack{m \mid n \\(m, k)=1}} \mu(m) \log \left|\left(\alpha^{\sigma}\right)^{n / m}-\zeta_{k}^{\bar{m}}\left(\beta^{\sigma}\right)^{n / m}\right|$
$-\left[K_{0}\left(\zeta_{k}\right): K_{0}\right] \varphi(n) \frac{(k, n)}{\varphi((k, n))} \log N \mathfrak{d}$
$=\sum_{\sigma \in S} \sum_{\substack{m \mid n \\(m, k)=1}} \mu(m)\left(\frac{n}{m} \log \max \left\{\left|\alpha^{\sigma}\right|,\left|\beta^{\sigma}\right|\right\}+O\left(d+w\left(\frac{\alpha}{\beta}\right)\right) \log k n\right)$
$-\left[K_{0}\left(\zeta_{k}\right): K_{0}\right] \varphi(n) \frac{(k, n)}{\varphi((k, n))} \log N \mathfrak{d}$
$=\left[K_{0}\left(\zeta_{k}\right): K_{0}\right]\left(\varphi(n) \frac{(k, n)}{\varphi((k, n))} w\left(\frac{\alpha}{\beta}\right)+O\left(d+w\left(\frac{\alpha}{\beta}\right)\right) 2^{\nu(n)} \log k n\right)$,
where the constant in O depends only on d and is effectively computable. Now, by Dobrowolski's theorem [2], if α / β is an integer, then

$$
\begin{aligned}
w\left(\frac{\alpha}{\beta}\right) & =\log \prod_{\sigma \in S_{0}} \max \left\{\left|\frac{\alpha^{\sigma}}{\beta^{\sigma}}\right|, 1\right\} \\
& \geq \log \left(1+c_{1}\left(\frac{\log \log e d}{\log d}\right)^{3}\right) \geq c_{2}\left(\frac{\log \log e d}{\log d}\right)^{3}
\end{aligned}
$$

where c_{1} and c_{2} are absolute constants.

If α / β is not an integer, then $(\beta) \neq \mathfrak{d}$ and

$$
w\left(\frac{\alpha}{\beta}\right) \geq \log N \beta-\log N \mathfrak{d} \geq \log 2
$$

Thus, in both cases,

$$
w\left(\frac{\alpha}{\beta}\right) \geq c_{2}\left(\frac{\log \log e d}{\log d}\right)^{3}
$$

provided $c_{2} \leq \log 2$.
Since for every $\varepsilon>0$

$$
\frac{\varphi(n)}{2^{\nu(n)}}>c_{3}(\varepsilon) n^{1-\varepsilon}
$$

it follows that for $n>c(d, \varepsilon)(1+\log k)^{1+\varepsilon}$

$$
\log \left|N_{K / \mathbb{Q}} \psi_{n}\left(A, B ; \zeta_{k}\right)\right|>[K: \mathbb{Q}] \log n k,
$$

which proves the lemma.
Proof of the theorem. By Lemma 5, for $n>c(d, \varepsilon)(\log k)^{1+\varepsilon}$ we have (2), and thus $\psi_{n}\left(A, B ; \zeta_{k}\right)$ has a prime ideal factor \mathfrak{P} in K such that

$$
\operatorname{ord}_{\mathfrak{P}} \psi_{n}\left(A, B ; \zeta_{k}\right)>\operatorname{ord}_{\mathfrak{P}} k n .
$$

But $\mathfrak{P}\left|\psi_{n}\left(A, B ; \zeta_{k}\right)\right| \phi_{k n}(A, B)$, hence by Lemma 3 we have that \mathfrak{P} is a primitive prime divisor of $A^{k n}-B^{k n}$ and thus does not divide $A^{m}-\zeta_{k}^{j} B^{m}$ for $m<n$ and arbitrary j. On the other hand,

$$
\mathfrak{P}\left|\psi_{n}\left(A, B ; \zeta_{k}\right)\right| A^{n}-\zeta_{k} B^{n},
$$

thus \mathfrak{P} has the desired property.

Bibliography

1. J. Browkin, K-theory, cyclotomic equations, and Clausen's function, Chapter 11, Math. Surveys Monographs (L. Lewin, ed.), vol. 37, Amer. Math. Soc., Providence, RI, 1991, pp. 233-273.
2. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), 391-401.
3. A. Schinzel, Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields, J. Reine Angew. Math. 268/269 (1974), 27-33.

Institute of Mathematics, Polish Academy of Sciences, P.O. Box 137, 00-950 Warsaw, Poland

E-mail address: schinzel@impan.impan.gov.pl

