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ABSTRACT. The theorem about primitive divisors in algebraic number fields is 
generalized in the following manner. Let A, B be algebraic integers, (A, B) = 
1, AB $& 0, A/B not a root of unity, and Ck a primitive root of unity of 
order k . For all sufficiently large n , the number An - CkBn has a prime ideal 
factor that does not divide Am - CJBm for arbitrary m < n and j < k. 

The analogue of Zsigmondy's theorem in algebraic number fields [3] asserts 
the following. 

If A, B are algebraic integers, (A, B) = 1, AB $ 0, and A/B of degree d 
is not a root of unity, there exists a constant no(d) such that for n > no(d), 
An - Bn has a prime ideal factor that does not divide Am - Bm for m < n. 

This theorem will be extended as follows: 

Theorem. Let K be an algebraic number field, A, B integers of K, (A, B) = 

1, AB $& 0, A/B of degree d not a root of unity, and Ck a primitive kth 
root of unity in K. For every e > 0 there exists a constant c(d, e) such that if 
n > c(d, -e) (1 +log k) 1+8, there exists a prime ideal of K that divides An - kBn, 
but does not divide Am - B'Bm for m < n and arbitrary j. 

The above theorem implies the finiteness of the number of solutions of gen- 
eralized cyclotomic equations considered by Browkin [1, p. 236]. 

The proof will follow closely the proof given in [3]. Let Q(A/B) = Ko, 
A a , where a , a E Ko , , are integers, and (a = . Let S and SO 
be the set of all isomorphic injections of KO(Ck) and Ko, respectively, in the 
complex field, and set 

w (a/l,) = log J7 max{ IoIa l, fl,8 } - log N', 
aESo 

where N denotes the absolute norm in Ko. Here, w(a/fl) is the logarithm of 
the Mahler measure of a/,f and so it is independent of the choice of a, fi in 
Ko. 

Lemma 1. If lal = fl,8, but a/fl is not a root of unity, then 

log Ian - OnklI = n log fl,8 + O(d + w(a/fl)) log kn, 
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where the constant in the 0-symbol depends only on d and is effectively com- 
putable. 

Lemma 2. If lIaI -- I,8I, then 

1ogI an - CkOl0I = nlogmax{Ia I, I,lI} + O(d2?+ dw(a/fl)), 

where the constant in the 0-symbol is absolute and effectively computable. 

The next lemma is just quoted from [3], where it occurs as Lemma 4. 

Lemma 3. Let >n (x, y) be the nth cyclotomic polynomial in homogeneous form. 
If p is a prime ideal of K, n > 2(2d - I )3I$n (A, B), and l3 is not a primitive 
divisor of An - Bn, then 

ordgq5n (A, B) < ord n . 
Finally, we prove 

Lemma 4. Let 
Vln(X , Y; CO = I (X -kY -i 

(j,n)=I 
j= 1 mod k 

We have 

(1) yn(X, Y; Ck) = J (xnlm/-r kyn/rn)u(rn) 
mjn 

(m, k)= I 

where m7m7 l mod k and 

degqn = p(n) (k n))) 

Proof. The right-hand side of (1) can be written as 
n/m- I 

]7J ]7J (x - c, /m 0jn/mY(r) 
min i=O 

(m, k)= I 

A factor x - kny occurs in this product with the exponent 

n/m- I 

E= / ,(m) S 1. 
min i=O 

(m, k)=1 m(k,+i)=_j mod kn 

Now, 
( n/rm-I 

n I J 5 1 if mlj, 

i=O ki+mT=_h/rm mod knlm 
m(ki+mi)_j mod kn 1 0 otherwise, 

and if mlj, 
n/m- r I if j _ I modk, 

i=o 0 otherwise. 
ki+m-=j/rm mod kn/m 
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Hence, 
u(m) if j- Imodk, 

E = mln, mlj 
0 O otherwise, 

and finally 
F I if (n, j) = 1, j_ = modk, 

- 0 otherwise, 
which proves the first part of the lemma. 

In order to prove the second part, we notice that there are exactly ~q (n) (k n) 
,po((k,n)) 

positive integers j < kn such that (n, j) = 1, j =1 modk . 51 

Lemma 5. For every e > 0 there exists c(d, e) such that, if 
n > c(d, e) (I + log k)+, 

then we have 

(2) INK/IQVn(A, B; Ck)O > (nk)[KQ]. 

Proof. By Lemma 4, 
/B 0(n)(k, n)10((k, n)) 

ing(A, B; Ck)O (>fl ) n(a, fi; Ck) 

and since (B) = O-1, we have 

(int(A, B; COk)) = f(n)(k,n)/I(((k,fn)) /n (cy fi; k )C 

[K: Ko(;k)] logI NK/IQ gn(A, B; Ik)l 

= log I NKO(Ck)/Q Iln (a, I fi; Ck)I - [Ko(Ck) : KO](P (n) (k n ) log N' 
(p ((k , n)) 

= Z >1? jj(m) log I (Va)n/m - m (fa)nf/m I 
aES mln 

(m, k)= I 

- [Ko(Ck) : Ko]f (n) (k, n) logNt' ~p((k , n)) 

=Z S E (m) (-logmax{laag, Iflf}? + O (d + w ( ))logkn) 
aES mln 

(m,k)=I 

-[Ko (Ck): Ko ]p (n) ((k n)) _log Ni 
(po((k, n)) 

= [Ko(Ck) :Ko] ((n) (k ) a +O(d+w (a)) 2v(n)logkn) 

where the constant in 0 depends only on d and is effectively computable. 
Now, by Dobrowolski's theorem [2], if a/fl is an integer, then 

w( ) log max{l 1} 

( lo ? log log ed 3 log log ed 3 
>logeIre cl and a( loged >lC2 l 

where cl and C2 are absolute constants. 
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If a/,B is not an integer, then (,f) $ tD and 

w () > logN,8 - logN' > log 2. 

Thus, in both cases, 

(a'\ ) > (log log ed 3 W 
8 ( 

C2 log d} 
provided c2 < log 2. 

Since for every e > 0 
(o(n) 

>C3(e)n 2v(n) 
it follows that for n > c(d, e)(1 + logk)1+8 

log NK/QVYn(A , B; Sk)l > [K: Q]lognk, 

which proves the lemma. El 

Proof of the theorem. By Lemma 5, for n > c(d, 6)(log k)1+8 we have (2), and 
thus Jn (A, B; Sk) has a prime ideal factor q3 in K such that 

ordp yn (A, B; k) > ordT kn. 

But 'PI Yn (A, B; Ck)kIkn(A, B), hence by Lemma 3 we have that q3 is a prim- 
itive prime divisor of Akn - Bkn and thus does not divide Am - CJBm for 
m < n and arbitrary j. On the other hand, 

'P3I n (A, B; Sk)A -CkB- 

thus q3 has the desired property. 51 
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